截止目前累计成功为5,000,000 用户成功查重检测

CNCNKI学术不端文献查重检测系统 多语种 图文 高校 期刊 职称 查重 抄袭检测系统

超重力机结构设计

时间:2016-10-01 13:00:00 编辑:知网 阅读:

摘  要

超重力机作为一种新型、高效的强化传质设备,已被广泛用于化工分离与纳米材料制备领域。超重力湿法高精度脱除低浓度煤气中的硫化氢的成功运行,有望替代传统干法脱除的工艺。可以广泛应用于煤气天然气、等工业气体中的脱硫。超重力技术能高效率脱除高浓度体系中的高浓度,这样的技术指标和运行成本是传统脱硫塔技术远远达不到的;高精度脱除天然气中的硫化氢技术,基本达到干法精脱硫的效果,但其经济技术指标明显优于干法技术。因此,有理由相信,超重力机将会广泛应用到天然气、石油气以及水煤气等气体的硫化氢去除作业,创造出巨大的经济收益以及社会进步。

本文是在收集超重力机(旋转填充床)的设计、计算、分析、使用等资料的基础上,参照现在超重力机有关的设计理论以及方法,来完成对超重力机的结构设计。知网论文查重

第一章 绪   论

    1.1 超重力技术研究背景

所有在地球上的物体都会受到地球引力的作用,而作为两类极端的受力作用环境——微重力条件以及超重力条件,为物理学、化学、材料学以及生物学等打开了全新的研究领域,添加了极大的生命活力。在微重力科学不断发展,为大众广泛接受的同时,超重力科学也逐步开始引起大众的注意力。

 

新世纪以来,全球的专家学者都十分关注超重力科学研究,指的是采用旋转设备形成一类特殊的工作环境,也就是超重力条件,其加速度比重力加速度大许多。在超重力作用下,不同类型分子之间相互作用以及传导过程都比一般重力作用下速率大很多,不仅仅导致整个反应体系的速率提高,令单位设施体积的工作效率大大提升,大约提升1~2个数量级,进而充分精简化设计体积,令过去数十米高的大型设备缩小为高度低于两米的超重力机。所以,超重力技术被认为是提高传导以及多体系作用过程的一项创新性技术手段,被称之为跨世纪的领先技术,同时,超重力机也美称之为“化学工业中的晶体管”。

 

    1.1.1超重力技术

超重力技术是使用某种方法让物体在地球的万有引力场之下可以获得比地球加速度大得多的力。一般情况下我们实现超重力环境是通过让物体旋转来获得离心力。它使重力加速度转化成为离心加速度,打破一般重力场里加速度的条件限制。在超重力作用下,参加反应或者准备分离的液体分子在比重力加速度大上百倍甚至千倍的超重力作用下,通过多孔介质完成流动传递,不同类型的分子之间进行扩散,其扩散速率要比在地球重力场作用下的大很多,超强的剪切力把液体瞬间打碎成为纳米级别的颗粒,同时形成巨大的、不断交替的相界面,传导速率要比在普通塔器里的大很多,大约1~3个级别。由超重力技术现世以来,因其相对于传统的传质设备具有体积小、重量轻、容易操作、可以用于不同环境等特点,得到了很多相关研究者的热切关注。特别是在化工方面有广阔的应用前景。

 

 

    1.1.2 超重力旋转填充床的研究和意义

超重力填充床设备,长期以来都是全球研究传质学科重点关注的一门前沿性创新项目课题。即使这项技术的应用时间比较短,但是截至目前看来,它的发展前景非常广阔,体现出了强大的竞争力,特别是在在纳米材料的生产方面,超重力技术具有天然的优势令他获得了众多专家学者们的关注。不仅在纳米材料学科领域里获得广泛的应用,超重力技术还在原油冶炼、环境治理、物理化学等各大领域里具有重大应用价值。

最近几年以来,超重力型填充材料床设备的研究发现已经有了突破性的进步发展,但是这门全新的可续技术,它还有很多尚待发掘的性能特点,需要专家学者的深入研究。从工业实践方面分析,超重力填充床还没有得到广泛的应用,这项技术的推广使用还有待提高。

 

    1.2超重力机的结构特点和操作原理

    1.2.1超重力机的工作原理和类型

超重力机作为一类全新的强化传导设施在化工领域迅速发展进步,截至目前,超重力机的构造,通常有立式以及卧式两类。根据流体在填料层中的流动方式通常又可以划分为逆流型以及错流型两种,例如下图1-1所示。旋转填充材料床是由转轴、格箱、喷淋管以及液体传送管等各类零部件构成,转轴是旋转填充材料床中十分关键的组成,通常用作加固以及连动填充材料进行旋转

 

错流型填充床的基本特征有:在液相中,采用中间静止的喷淋管完成喷洒作业,喷洒到正在高速旋转的填充材料中。流入转子的液体在强大离心力的作用下,旋转速率大幅提高,穿过填充材料层之后,在填充床的内部完成集聚,从排液口流出。气相采用轴向运动穿过转子填充材料层,在填充材料层里完成两者的相互接触,在填充材料的表面实现气液两相之前的相互转化过程。

旋转填充材料床逆流的基本原理是:当气体流入旋转填充材料床的边缘位置之后,从外到里在巨大压力作用下完成逆向流动,最后在填充材料的外部渗透出。液体从进液管中流入。使用喷淋管喷射,喷洒在填充材料的内部。流入转子的液体随着转子中填充材料的转动,旋转速率提高,在离心力作用下,径向流出。在两相传递过程里,填充材料将液相分开、破裂进而生成许多实时更新的液滴,同时填充材料通道又令液相的表面不断更新,在旋转床中构成了良好的传递和作用环境,令气相、液相之间的接触效率充分提升。

 

 

    1.2.2超重力机的转子结构

超重力机结构中十分关键的组件就是转子,转子的主要作用在于:一是固定填充材料,二是带动填充材料进行旋转,使气液相接以及微观转化获得良好的运行效果,截至目前,超重力机的转子构型有填料式、碟片式、折流式以及螺旋式。整体来说,填料式是应用范围最广的转子类型。

1.填料式转子

填料式转子结构示意图如下图1-2所示,主要是在转子内部添加填充材料,填充材料的填充方式通常选用高空隙率以及大比表面积的散装方式或者整装模式,填充材料通常都是选用颗粒状、金属丝网状或者波纹状等类型。和重力场作用下的传递对比,旋转床中转子的工作效率基本上是采用减小液膜的厚度,提高接触面积等方式改善的。除此之外,传质还能够在填充材料之间的缝隙或者设备间隙里的液体表面完成。

返回